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objects: Application to pigmented skin lesions
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Abstract

The detection of symmetry axes through the optimization of a given symmetry measure, computed as a function of the mean-square
error between the original and reflected images, is investigated in this paper. A genetic algorithm and an optimization scheme derived
from the self-organizing maps theory are presented. The notion of symmetry map is then introduced. This transform allows us to map an
object into a symmetry space where its symmetry properties can be analyzed. The locations of the different axes that globally and locally
maximize the symmetry value can be obtained. The input data are assumed to be vector-valued, which allow to focus on either shape,
color or texture information. Finally, the application to skin cancer diagnosis is illustrated and discussed.  2000 Elsevier Science B.V.
All rights reserved.
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1. Introduction and the detection of symmetry axes is necessary. The
approach developed throughout this paper provides the

The goal of this research is to develop robust feature physician with a complete analysis tool for the symmetry
extraction methods for the computer-aided diagnosis and criterion.
follow up of pigmented skin lesions. Digital methods have In this study we have used digitized epiluminescence
shown to be reliable tools for the early diagnosis of skin microscopy (ELM) images of pigmented skin lesions
cancer (Green et al., 1994). The computer-aided evaluation (Binder et al., 1995). Epiluminescence microscopy, also
of diagnostic features offers empirical measures, in con- called dermatoscopy or dermoscopy, is a non-invasive
trast to the more qualitative evaluation done by physicians. technique that uses an oil immersion to render the skin
In the clinical diagnosis of pigmented skin lesions, one of translucent and make pigmented structures visible. There is
the main feature is the lesion asymmetry, which is more information in these images than in clinical images
evaluated by drawing two orthogonal axes that maximize and their use should therefore lead to a significant im-
the perceived symmetry (Stolz et al., 1994). The evalua- provement of the diagnosis accuracy. A review of the
tion is then binary: the lesion is either symmetrical or technique can be found in (Argenyi, 1997). A set of 50
asymmetrical. In addition to the small number of possible benign melanocytic lesions and 50 malignant melanoma,
outcomes, the evaluation is highly subjective and depends along with their histology, has been used to evaluate the
on the physicians experience. Therefore, the development different techniques. Photographic pictures of the lesions
of automated techniques for the quantification of symmetry have been taken and later digitized at a size of 768 3 512

pixels. To localize the lesions, two different approaches
have been developed and presented in previous publi-
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diffusion and morphological flooding (Schmid, 1999a). The different approaches to symmetry axis computation
Both techniques have been used in our investigations in are:
order to evaluate the sensitivity of our system to possible • based on the human perception of symmetry,
changes in the lesion boundary location. • model based,

The symmetry of a lesion should be evaluated according • measure based.
to its shape, color and texture (Stolz et al., 1994). While it The former approach is based on the human visual system
is straightforward that symmetrical objects show the same and the knowledge we have about how the human brain
symmetry axes for all these components, it is not neces- perceives and analyses symmetrical patterns. However, it
sarily the case when objects tend to be asymmetrical. In appears that this research field has often led to contradic-
that case, the axis that minimizes the visual difference tory results (Tyler et al., 1996). The second approach takes
between an object and its reflected version may be into account a model of the observed objects to compute
different when shape, color and texture are considered the symmetry axes. In the case of pigmented skin lesions,
separately. Because the lesions are almost-symmetrical or for example, benign melanocytic skin lesions usually tend
asymmetrical objects, a candidate symmetry axis is an axis to have an elliptic shape. This characteristic may be used
that locally maximizes a given symmetry measure. This to facilitate the axes computation (Schmid, 1997). How-
has led our investigations to the general problem of ever there is not always an a priori knowledge of what will
symmetry quantification and optimization. This paper be analyzed. The last approach, which is investigated in
proposes two approaches to this optimization problem: the this study, defines a symmetry measure and attempts to
computation of the axis that maximizes a given symmetry find the axis that maximizes this function.
measure, and the computation of a symmetry map that
completely describes the symmetry properties of objects. 2.2. Symmetry in computer vision
In the former case two techniques are proposed, a genetic Several methods have been proposed to compute the
algorithm and a self-organizing map, which are intended to orientation of two-dimensional discrete objects. A widely

`provide a unique axis as quickly as possible. In the latter used method is the discrete Karhunen-Loeve transform
case, a kind of ‘symmetry transform’ is computed, that (KL), also called principal component decomposition. This
maps any object into a symmetry space. Two multi- approach may be used for binary images (Gonzalez and
resolution techniques are proposed to compute a symmetry Wintz, 1992) or gray level images, where the pixel
map. coordinates are weighted by the gray level values or the

¨In Section 2, a brief review of the existing literature is spatial frequencies (Bigun, 1991, 1994). The analogy
given for application to almost-symmetrical and between orientation and symmetry axis may be possible
asymmetrical objects. In Section 3, the different parame- only for intrinsically symmetrical objects. It is however not
ters used in the optimization process are presented. Sec- guaranteed. A simple example is to consider an equilateral
tions 4 and 5 are concerned with the heuristic search triangle with a very large base: the principal component
methods and the symmetry maps, respectively. The appli- will be parallel to the base while the symmetry axis is
cation to pigmented skin lesions is illustrated and dis- perpendicular to the base. In addition, the definition of a
cussed in Section 7, and finally the techniques are summa- symmetry value can only be a function of the data variance
rized, and conclusions are drawn in Section 8. from the axis, which is actually the minimization criteria.

Any other measure would not lead to optimal results.
A method to compute the best symmetry axis called

n-transform was first proposed in (Marola, 1989). The
2. Symmetry axis detection n-transform F of an image or object is obtained byn

multiplying each coordinate vector x n times by itself, thei

2.1. What is a symmetry axis? image being centered at the center of mass. It is shown in
(Marola, 1989) that both the number and the location of all

In geometry, symmetry is an exact correspondence in the axes of symmetry can be computed from the center of
position or form about a given point, line or plane. From mass of F and F , where n ,n , . . . are the values of nn n 1 2i i11

this definition it follows that the extraction of a symmetry for which the center of mass is not located at the origin. A
axis is possible only for intrinsically symmetrical objects. coefficient of symmetry b is also introduced. The exact
In general, this is not the case for natural images such as location of the symmetry axis may be found by maximiz-
those of pigmented skin lesions. Even for symmetrical ing b, starting from the axis provided by the n-transform.
objects, perfect symmetry is impossible to obtain in digital For this purpose, b is decomposed into a power series.
images due to imperfect lighting, digitization or occlusion. The complete derivation can be found in (Marola, 1989).
The term of symmetry axis is often used for almost- This method is mainly devoted to symmetrical and almost-
symmetrical images or objects, and corresponds to the axis symmetrical objects and has been shown to require long
that minimizes the visual difference between the original processing time. Especially when the objects tend to be
and its reflection. asymmetrical, the result obtained after optimization of b
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can strongly diverge from the result initially obtained with like color and border regularity. In (Stoecker et al., 1992),
the n-transform. classification results using the principal component method

A method to extract rotational and reflectional symme- are shown. The classification uses a coefficient of
try, that is symmetry about a point and an axis respective- asymmetry, although this notion is not uniquely defined,
ly, is proposed in (Masuda et al., 1993). It is based on and a threshold to separate symmetrical and asymmetrical
successive matching of transformed versions of the image lesions. The results are then compared with those given by
to obtain the best match. The directional correlation of dermatologists. An interesting extension would be to
edge features is used to evaluate the matching. This compute the statistical distribution of the symmetry values
method may require a large number of iterations to find the according to the type of lesion to discriminate benign from
symmetry axis location. However, the advantage of this malignant melanocytic lesions. One may wonder how
method is that it does not require any knowledge about the accurate is the evaluation of a subjective parameter like the
centroid, and that it also allows for the detection of degree of asymmetry done by a physician, and if he is able
symmetry properties in almost-symmetrical images. to reproduce this measure.

The automatic detection of rotational symmetry is In (Gutkowicz-Krusin et al., 1997) the principal com-
presented in (Leou and Tsai, 1987). This method, devoted ponent approach has also been applied to dermatoscopic
to shape analysis, is based on the determination of the images. However, the authors point out that computing
number of intersections between a closed curve S and the axes from a binary image is only shape dependent, and that
circle centered at the centroid of S with a radius equal to the inner structure of the lesion should be included to
the mean distance to S. However, this method works only account for the inhomogeneous distribution of the pig-
for symmetrical objects. mentation.

In (Zielke, 1993) a method for detecting mirror symme- The methods used up to now are of low complexity and
try using gray level information and local orientation allow a quick computation but they have a number of
applied to the recognition and tracking of cars is presented. serious shortcomings. First, the symmetry measure and the
This method, however, assumes that only vertical or near symmetry axis computation are defined separately, which
vertical symmetry are of interest. In (Sun, 1995) the means that the former is not optimized. Secondly, the
orientation of the gradient vectors in the gray scale image computation is mostly based on shape information, some-
is used to compute the symmetry axis orientation. This times on luminance information, although clinical research
method, like all gradient based methods, has shown to be has shown that color and texture are important in the
excessively noise sensitive. Symmetry has been treated as evaluation of symmetry (Stolz et al., 1994). New ap-
a continuous feature in (Zabrodsky et al., 1995). They proaches which intend to fill these gaps are presented in
define a symmetry distance that allows for reconstructing the following sections.
symmetry of occluded shapes. Symmetry in planar shapes
is discussed in (Van Gool et al., 1995). Other approaches
based on shape information and polygonal representation 3. Optimization parameters and data representation
can be found in (Davis, 1977) and (Parui and Dutta
Majumder, 1983). A more general approach to finding 3.1. Symmetry measure
symmetry axes of skewed objects can be found in (Fried-
berg, 1986). Ideally, the maximum symmetry axis is the one that

Most of the studies do not make use of a symmetry minimizes the visual difference between the original and
measure for the symmetry axis computation. The intro- reflected objects. The problem of quantifying the differ-
duction of such a measure becomes necessary when ence between two objects, and more generally two images,
dealing with images that might be clearly asymmetrical but is non trivial because the limit between similar and
where symmetry must be quantified. This approach gener- different objects is very subjective. In addition, the sym-
ates new constraints that must be taken into account. For metry quantification should be a uniform measure, which
example, the segmentation problem, which should separate means that a constant change in the visual difference
the object from the background, must be solved in should result in a constant change in the symmetry value.
advance. The reason is that we use a symmetry measure This notion of uniformity has previously been introduced
that must not be influenced by the image frame or any for color spaces (Wyszecki and Stiles, 1982) and for video
smooth window. sequence coding (Van den Branden-Lambrecht and Ver-

scheure, 1996). The correspondence between the latter and
2.3. Symmetry and automated skin cancer diagnosis symmetry measure is immediate, since measuring the

The symmetry measure applied to digital images of distortion between an image and a coded/decoded version
pigmented skin lesions has been presented in previous is a similarity measure. Hence, these methods may be used
papers (Stoecker et al., 1992; Gutkowicz-Krusin et al., to evaluate the degree of symmetry, but they are un-
1997). Usually, the extraction of this feature is part of a fortunately too complex and need too much computation
complete classification scheme, including other features time to be used in optimization problems.



272 P. Schmid-Saugeon / Medical Image Analysis 4 (2000) 269 –282

The symmetry measure used in this study is based on r 5 2 b cos(w) , (7)
the mean square error (MSE) between the original and

where w [ [0;p) is the angle with the x axis (clock-wise)reflected image for a given axis:
and r is a radial offset, i.e. the normal distance from the

2˜ ˜MSE 5 E iG(x,y) 2 G(x,y )i , (1)f g origin to the axis. The x axis is assumed to be left–right
oriented and the y axis top–bottom oriented. The linenwhere G(x,y): [0,c 2 1] 3 [0,r 2 1]∞R is the vector-val- equation becomes

ued input image and n the vector dimension, (x,y) the pixel
r˜ ˜coordinate and (x,y ) the symmetric coordinate. The image ]]y 5 tan(w)x 2 , (8)

cos(w)dimensions are r rows and c columns. Knowing that any
object can be decomposed into a symmetric component

when w ± p /2 and
G (x,y) and an asymmetric component G (x,y) using thes a

following relationships: y 5 r , (9)

˜ ˜G(x,y) 1 G(x,y ) when w 5 p /2. A uniform variation of the parameters w
]]]]]G (x,y) 5 , (2)s 2 and r corresponds to a uniform rotation and a uniform

lateral shift respectively.˜ ˜G(x,y) 2 G(x,y )
These two parameters must be normalized to be insensi-]]]]]G (x,y) 5 , (3)a 2 tive to any linear geometrical transform of the object of

interest, such as rotation, scaling and shifting. A binarywith G(x,y) 5 G (x,y) 1 G (x,y), then the asymmetric com-s a

mask of the object, here the lesion, is obtained byponent can be considered as symmetry noise and the MSE
segmentation (Schmid, 1999a,b). The image origin is set togiven by Eq. (1) is proportional to its energy. As for signal
the center of gravity (c ,c ) of this mask. The angle w ofcompression applications for example, the distortion due to x y 0

its principal component (Gonzalez and Wintz, 1992) andnoise can then be measured through the peak signal-to-
the largest distance r from the center to the object (herenoise ratio (PSNR): max

lesion) border are used for normalization. Finally the two
2N 2 1s d following parameters are obtained:qS D]]]PSNR 5 10 log , (4)10 MSE

w̃ 5 w 2 w , (10)0
where N is the number of quantization levels in the image.q

A symmetry coefficient can finally be defined as follows: r̃ 5 r /r . (11)max

1
]]]c 5 c(w,r,G ) 5 1 2 , (5) ˜ ˜1 1 PSNR The use of w and r, as well as taking (c ,c ) as origin,x y

renders the processing insensitive to scale change, shiftingwhere w and r are two axis parameters (see Section 3.2),
or rotation of the object of interest. Fig. 1 illustrates theand c [ [0,1]. This coefficient is equal to 1 only if
two axis parameters and the normalization components. Asymmetry is perfect and decreases down to zero for
circular search area is defined, centered at the center ofincreasing asymmetry. Using the PSNR is not an optimal
gravity and with radius R equal to r /2. The reason ismaxway of quantifying the visual difference between two
that searching for symmetry axes close to the objectimages but this kind of measure is easy to implement and
boundary is not sensible. The limit above has shown to bereduces significantly the processing time.
sufficient in our experiments, even for completelyThe techniques developed later in this paper are not
asymmetrical lesions.bound to the above defined symmetry coefficient. Any

other measure, depending on the application, can be used
instead. Therefore, in the following text, the symmetry
measure will be called fitting function.

3.2. Parameter space

Before discussing the optimization of the fitting func-
tion, one has to define the two parameters needed to
describe an axis. The usual way of describing a line with a
mathematical equation is y 5 ax 1 b, where a is the slope
and b is an offset in the y direction. To have finite values
and uniform scales, the two following parameters are
defined:

Fig. 1. Axis parameters used to construct a symmetry map: angle and
offset. Both parameters are normalized as described in Section 3.2.w 5 arctan(a) , (6)
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3.3. Feature vectors for color and texture description with M the number of filters, v and v the frequencymax min

limits and 1 < i < M. v is the radial spatial frequency.r

Since there is no proof that symmetry in shape, color These equations have been derived from Gabor filters
¨and texture are strongly correlated, especially in almost- (Bigun, 1994), which have shown to be one of the most

symmetrical and asymmetrical objects, three symmetry efficient methods for texture description.
values can be computed using the corresponding infor-
mation. Therefore feature vectors that describe local color 3.4. Windowing
and structure must be used. The goal here is not to
investigate the description of texture and color, but to The fitting function must be computed from the pixels
integrate these components into symmetry measurements. which constitute the object of interest. If all the image

Starting with RGB color images, one has to compute the pixels are considered, the system will detect the image
frames which will be used for extracting color and texture frame symmetry axes. In addition, the same object at
information. The latter may be simply the combination of different scales would give different symmetry values. In
the three color input components. From a spectral point of our approach only pixels within the lesion are used while
view, however, these components also contain luminance the reflected pixels may be anywhere within the image
information. It seems that the luminance component frame. Pixels reflected outside the image are considered to
strongly influences our color perception, however it should have a symmetric value of zero.
be established in future studies if luminance can be Fig. 18 shows a pigmented skin lesion that will be used
skipped from the color representation of pigmented skin throughout this paper to illustrate different techniques.
lesions. In this study we have used texture descriptors Binary masks are obtained from two different techniques, a
extracted from the luminance component and two filtered segmentation and a contour detection technique, as illus-
chrominance components as color descriptors. The light trated in Fig. 19. In the former case only the outer
absorption in pigmented skin lesions is mainly due the boundary has been kept.
melanin, which is actually the pigment. The density of
melanin will control the light absorption by the skin, and
therefore the luminance component will contain most of 4. Optimization schemes
the structural information. This is the reason we have
chosen the luminance component in our study. It can be 4.1. Genetic algorithm
very well obtained from a uniform color space like the

* * *CIE L u v color space (Wyszecki and Stiles, 1982). We will first investigate optimization techniques that
*While the luminance component L may not render might be used to obtain the best fitting symmetry axis as

pigmented structures in an optimal way, we have noticed quickly as possible. To this end, two techniques are
that all visible structures are present in this component. proposed, one based on a genetic algorithm (GA), and the
Uniform color spaces have the advantage of defining color other derived from the self-organizing maps (SOM)
distance as the Euclidean distance between components, theory. The former is presented in this paragraph while the
which is in agreement with the MSE computation. Low- latter is presented in Section 4.2.

* *pass versions of the u and v components are used as A GA is an active search method that uses operators
color descriptors. inspired by evolutionary processes. The parameters used

The use of Gabor filters for producing texture features for the optimization are seen as alleles and are part of a
has shown to be very powerful for texture discrimination chromosome. The goal of this technique is to find the best
(Turner, 1986). However, it is not suited in this case, since chromosome, i.e. the set of parameters that maximizes a
the filters are directional. Thus, symmetrical features must given function. The ‘quality’ of the chromosome should
have symmetrical directions, which depends on the sym- improve through the different generations. A new genera-
metry axis orientation. Isotropic filters are needed to avoid tion is obtained from the current set of chromosomes, all
this dependency. In this study a filter bank built of encoding a different combination of parameters, using
isotropic Gaussian filters has been used. The filter equa- different operators, typically crossover and mutation. The
tions are reproduction stage usually mixes part of two randomly

selected chromosomes. The complete scheme used in this0 2(v 2 v )r r i study is shown in Fig. 2.]]]G (v ) 5 exp 2 , (12)i r 2S D2s Most of the developments in GA deal with binaryr i

encoded chromosomes. This means that parameters can
0 i21

v 5 v 1 sh1 1 3(2 2 1)j , (13) only take a limited number of values and with a predefinedr mini

precision. When using real parameters, one possibility is to
M

s 5 (v 2 v ) /2(2 2 1) , (14) sample the parameter space and to define the chromosomemax min

length according to the required precision (Wright, 1991)
i21

s 5 s2 , (15) (the variables are ‘encoded’). The direct encoding of realr i
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rejection term in Eq. (20). When using the SBX, the
probability that the children are exactly equal to the parent
is the highest. However, if one assumes that the best fitting
parents are kept for the next generation, it is not desirable
to duplicate them. By keeping the best fitting chromo-
somes, one ensures the convergence to the optimal solu-
tion. The normalizing term is not useful for a numerical
implementation, which is very easy when using normal
distributions (Press et al., 1994). The distribution may also
be bounded without modifying the shape (we must have
b [ [0;`)). Fig. 3 plots the original and modified dis-Fig. 2. Complete scheme of the genetic algorithm used in this study.

tributions.
To speed up the computation, a different subset of the

input data is used at each generation. The consequence is
parameters has been also investigated, leading for example that the less symmetrical the object, the higher the
to blend crossover (BLX-a), which uniformly picks values introduced uncertainty. Depending on the subset, an axis
that lie on a line passing through two parents (Eshelman may show a better symmetry than the true symmetry axis.
and Schaffer, 1993). Simulated binary crossover (SBX) This effect is especially strong when using active search
has been introduced in (Deb and Kumar, 1995a,b). Its methods like the GA, where a well fitting chromosome
search power is similar to that of single-point crossover may be suppressed when the next generation is created.
used for binary GAs, where the search power is defined in However this simplification is necessary to speed up the
terms of the probability of creating an arbitrary child from processing.
two parents. In this study we use a modified version of this The optimization techniques have been evaluated in
technique. terms of robustness, that we define as the ability to

Crossover is used for producing offsprings from a reproduce results. We have reiterated the processing 50
couple of parent chromosomes. In SBX the following times for every lesion in order to visualize the convergence
spread factor is first defined: of the algorithms. Figs. 4–6 plot the different results

obtained for the lesion shown in Fig. 18. Here we use
c 2 c1 2 texture (red ‘x’) and color (green ‘1’) feature vectors as]]b 5 ** ** , (16)p 2 p1 2 input. Two symmetry axes are revealed, which is due to

their close symmetry values. The main drawback of usingn0.5(n 1 1)b if b < 1 ,
GAs is that the optimal solution may need a very longp(b ) 5 (17)H n120.5(n 1 1) /b otherwise , convergence time. GAs are powerful for finding an approx-
imate solution in very complex problems. Our results havewhere p , p are the two parent’s real variable values and1 2 shown that the successive runs lead to close but not equalc ,c the produced offsprings. The spread factor is ran-1 2 results (within a given precision). Figs. 5 and 6 showdomly chosen according to the above distribution (see
results obtained with our spread factor. While Fig. 5 shows(Deb and Kumar, 1995a) for the detailed procedure) and
a clear improvement over the results displayed in Fig. 4,used to compute c and c :1 2

c 5 0.5[( p 1 p ) 1 b( p 2 p )] , (18)1 1 2 1 2

c 5 0.5[( p 1 p ) 2 b( p 2 p )] . (19)2 1 2 1 2

We propose a different probability distribution for the
spread factor b, which is the combination between an
attraction term and a rejection term:

21 (b 2 1)
]]]] ]]]P(b ) 5 exp 2] H S D2Œ2p(s 2 s ) 2sa r a

2(b 2 1)
]]]2 exp 2 , (20)S DJ22sr

with s < s . The shape of this distribution is close to thatr a

obtained with the SBX and has the advantage of producing Fig. 3. SBX distribution and attraction / rejection Gaussian distribution
children different from their parents, which is due to the used to produce offsprings.
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increasing the data size does not improve significantly the
convergence, as shown in Fig. 6.

4.2. Self-organizing maps

Using self-organizing maps (SOM) is a way of mapping
an N-dimensional data distribution on a generally two-
dimensional array. The two-dimensional map is an array of
nodes to each of which is associated an N-dimensional
vector. Organizing this map is an iterative procedure based
on competition between the different nodes: at each
iteration an input vector is randomly selected and associ-
ated to the best fitting node (the reference node) using a
specific metric. The vectors associated to the differentFig. 4. The genetic algorithm has been applied 50 times on the lesion
nodes are updated using the following relationshipshown in Fig. 18. The SBX spread factor has been used, with 50
(Kohonen, 1995):chromosomes, 1000 generations and 1024 input samples. The red ‘x’

correspond to texture symmetry, while the green ‘1’ correspond to color
m (t 1 1) 5 m (t) 1 h (t)[x(t) 2 m (t)] , (21)symmetry. i i ci i

where t 5 0,1,2, . . . is the iteration number (time variable),
x(t) is the randomly selected input vector and h (t) isci

called the neighborhood function. Subscript i indicates the
node number and c the reference node number.

The neighborhood function weights the update term
x(t) 2 m (t) according to the distance of node i to thei

reference node c within the map. Different functions may
be defined under the condition that h → 0 with increasingci

2uur 2 r uu, where r [ R is the position of node i. It is alsoc i i

necessary for convergence that lim h (t) 5 0, i.e. thet→` ci

vector update decreases in time.
One may wonder how this technique can be used to

solve an optimization problem. Let the N-dimensional
feature space be the parameter space (in our case n 5 2). A
random set of input vectors is selected and the fitting
function is approximated. The closest vector in the map is

Fig. 5. Results obtained using the same approach as in Fig. 4 but with the the reference vector. The nodes are updated using a
attraction / rejection spread factor. modified version of Eq. (21):

m (t 1 1) 5 m (t) 1 f(c)h (t)[x(t) 2 m (t)] . (22)i i ci i

The function f(c) (for example f(c) 5 c) is introduced
to weight the update according to the fitting function value.

Since we are seeking a unique set of parameters, that is
the axis parameters which maximize the fitting function, an
alternative approach is to ensure the convergence of all the
nodes to a unique solution. This ‘moving map’ allows for
searching actively the parameter space with the advantage
of improving the search precision when the nodes are close
to the optimal parameter vector. To achieve this result, the
fitting function is evaluated for every vector in the map.
The best fitting vector becomes the reference vector.

In the case of the SOM-based method, the slowly
moving map guarantees optimal results at the end. The
same experiment that we did in Section 4.1 for the genetic
algorithm has been repeated for the SOM technique. Fig. 7Fig. 6. Results obtained with the genetic algorithm using 50 chromo-
shows the result we obtained using an 11 3 11 grid andsomes, 1000 generations and 4096 input samples. The attraction / rejection

spread factor has been used. three processing steps of respectively 7000, 2000 and 500
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Fig. 8. Symmetry map obtained by direct computation.

Fig. 7. Results obtained with the modified SOM technique. In the above
example, 32 input samples have been used and three steps of 7000, 2000
and 500 iterations have been necessary.

iterations. At every step the neighborhood size and am-
plitude have been decreased, and only 32 input samples
have been used to reduce the computation time. Both
symmetry axes are still present but even if they have very
close values the system is able, most of the time, to find
the best fitting axis.

Fig. 9. The same symmetry map as that shown in Fig. 8 has been5. The symmetry map
recomputed with a larger sampling step.

5.1. Raw processing
full resolution is obtained by interpolation. The effect is a
small shift of the maxima location and therefore theAnother approach is to compute the fitting function c
procedure requires the use of local optimization methods˜ ˜for 0 < w < p and 2 0.5 < r < 0.5. The result is a
(Press et al., 1995) to find the exact maxima location. Fig.symmetry map (SM) where all the maxima correspond to
10 shows the result obtained by using a reduced subsetlocal optima of the fitting function and where the global
(5%) of input samples. The fitting function is onlymaximum corresponds to the best fitting symmetry axis
approximated and the result is a noisy SM. A (very)(i.e. the axis that maximizes the fitting function, as
low-pass filter can be used to smooth out the map, aspreviously defined). For an SM of size m 3 n, c(i, j) 5
shown in Fig. 11, but it introduces a strong border effect.c(w,r,G ) with
The result is a strong shift of the maxima location. Because

p the processing time is still long for a reduced precision,
]w 5 i 1 w , (23)0m more elaborated methods are needed to construct an SM.

1
]]S Dr 5 j 2 0.5 r , (24)maxn 2 1

and 0 < i < m 2 1 and 0 < j < n 2 1.
Fig. 8 shows a typical result obtained for a melanocytic

1skin lesion . The main drawback of this approach is the
processing time (about 1 h on a Silicon Onyx computer for
a 256 3 256 SM).

To reduce the processing time, the sampling precision in
the parameter space is reduced. Fig. 9 shows the result
obtained when reducing the precision by a factor 5. The

1A unique lesion has been used for the different examples given
through this paper to allow the comparison, and the different SMs are Fig. 10. Symmetry map computed with a randomly chosen subset of
scaled and displayed using a non-uniform lookup table. image pixels.
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Fig. 11. The symmetry map shown in Fig. 10 has been smoothed out
with a Gaussian low-pass filter.

In the next paragraphs, two multi-resolution (MR) Fig. 12. Organization of the sampling grid used to compute a multi-
approaches for computing an SM are presented. resolution symmetry map.

5.2. Multi-resolution parameter space (s) (0) sG 5 G (2 (x 1 1) 2 1) , (26)

The first multi-resolution approach proposed in this where x 5 (x,y) is the pixel coordinate. The image origin is
paper uses successive refinements of the parameter space at (0,0).
to obtain the final SM. For an SM of size m 3 n, the fitting To avoid aliasing, a bicubic interpolation kernel called
function is approximated by Mexican hat is used, given by (Sonka et al., 1993)

2 3ˆ ˆ 1 2 2uxu 1 uxu for 0 < uxu , 1 ,O c (i 1 i, j 1 j )x[S x
2 3r r h 5 (27)4 2 8uxu 1 5uxu 2 uxu for 1 < uxu , 2,if i mod 2 ; 0 and j mod 2 ; 0, 3c(i, j) . (25) 5s s 0 otherwise ,c(i 2 (i mod 2 ), j 2 mod 2 )5

otherwise , and
`where s is the scale (s 5 0 is full resolution), 0 < i < m 2 1

and 0 < j < n 2 1. To reduce the computation time, only a E h (x) dx 5 1 . (28)3

subset S of size N of the image samples is used (x [ S , 2`

[0,r 2 1] 3 [0,c 2 1], where r and c are respectively the A typical filter size for a 0.25 cut-off frequency isˆ ˆnumber of rows and columns in the image). i and j are two N 5 7.
random numbers having a normal distribution N(m 5 The SM is initially computed using a small version ofs 2 2 ˆ ˆ(2 2 1) /2,s 5 m ). The introduction of i and j is the image, in our case 1/16 of the initial size (512 3 512).
intended to give at every sampling location a local value The obtained SM is a low-pass version of the true SM, and
instead of a punctual value. Fig. 12 shows how the only values above a given threshold are recomputed at a
sampling grid is organized. finer scale. The procedure is repeated until the initial image

w and r are obtained using Eqs. (22) and (23), size has been reached.
respectively. After each iteration, only regions having a Fig. 13 shows an SM obtained with the multi-resolution
value higher than a given threshold are kept for further approach described in the previous paragraph. The main
processing. drawback of this approach is the amount of noise produced

The second multi-resolution approach presented in the by the fitting function approximation. Even though it can
next paragraph uses the true fitting function computed for be removed using morphological filtering, one looses
the input image at different resolutions. precision in the maxima location. The real improvement

compared to the direct computation is the processing time
(up to a factor 60). On a 400 MHz PC, the 256 3 256 SM5.3. Pyramidal image representation
computation takes less than 1 minute. Best results are
obtained using a pyramidal image representation, as shownHere we use a pyramidal representation of the input
in Fig. 14. The SM is smooth and the maxima are preciselyimage (Burt and Adelson, 1983; Burt, 1981): the image
located (up to the grid resolution).size is successively reduced by a factor of two to generate

To obtain the different maxima in an SM, we used aa down-sampled version of the previous image. At scale s
simple but efficient procedure. A morphological openingthe down-sampled image is given by
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Fig. 13. Symmetry map obtained using a multi-scale approach.

Fig. 15. Symmetry axis of synthetic object with circular shape andoperator (Gonzalez and Wintz, 1992) with a cylindrical
symmetrical pattern. Both the gray-level principal component approach

structuring element is applied to the SM, followed by a and the optimization approach give the true axis.
gradient computation. We assume that regions of null
gradient contain a peak or maximum. In all our experi-
ments, this simple procedure allowed us to extract the full
list of local maxima in the SMs.

6. Effect of noise

This section gives the analytical value of the expected
MSE between a noisy image and its reflected version.

2˜ ˜The MSE is given by E[(I 1 n 2 I 2 n ) ], where I(x,y) is
the image intensity function and n(x,y) the added noise.
The tilde denotes the symmetrical value. While E[I] and

˜ ˜E[n] remain constant, the values of E[I ] and E[n ] vary
with the symmetry axis. However, for large objects and
assuming that most of the reflected object is inside the

˜image, we can write E[n] 5 m(E[n ]. Since the image and
Fig. 16. Synthetic object corrupted with zero mean Gaussian noise. Thethe noise are uncorrelated, and the noise has no spatial
result deviates from the true axis for the KL approach (gray axis), while

correlation, we can write the optimization approach is successful.

2˜ ˜E[nn ] 5 E[n]E[n ](m , (29)

E[In] 5 E[I]E[n] 5 E[I]m , (30)

˜ ˜ ˜˜ ˜E[In ] 5 E[I ]E[n ](E[I ]m . (31)

Fig. 17. The two curves show the angular difference between the true
symmetry axis and the axis obtained when the image is corrupted by
noise, for the synthetic image shown in Fig. 15 and for both the KL and
symmetry optimization approaches.Fig. 14. Symmetry map obtained using a pyramidal image representation.
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The MSE becomes TN
]]]specificity 5 , (34)

2 2 2 TN 1 FP˜ ˜˜ ˜E[(I 1 n 2 I 2 n ) ](E[(I 2 I ) ] 1 E[(n 2 n ) ]
TP2 2 2˜(E[(I 2 I ) ] 1 2E[n ] 2 2m ]]]]diagnostic accuracy 5 , (35)TP 1 FP 1 FN

2 2˜5 E[(I 2 I ) ] 1 2s . (32) where TP is the number of true positives, FN is the number
of false negatives, TN is the number of true negatives, and

The added noise affects globally the SM, which means FP is the number of false positives. A ‘positive’ is a
that existing maxima do not move and new maxima do not malignant melanoma.
appear. This result can be easily extended to vector-valued `The Karhunen-Loeve transform (KL), which is widely
images. used to quickly compute the direction of maximum data

Fig. 15 shows a circular object with symmetrical pattern. variance in binary or gray-level objects, has been also
Since the symmetry is perfect, both the gray-level principal evaluated with the same set of images. The orientation of a
component and the symmetry optimization approaches 2D object obtained through this technique is often associ-
give the exact result. When symmetry is imperfect, as ated with the symmetry axis, even if the relationship is not
illustrated with the noisy version shown in Fig. 16, only straightforward, except for intrinsically symmetrical ob-
the symmetry optimization approach is robust and still jects. For the binary KL transform, a binary mask of every
provides the exact result. Fig. 17 plots the angular devia- lesion is needed. An asymmetry index is computed for
tion from the true symmetry axis versus the Gaussian noise both (orthogonal) axes using the following definition
variance for both the KL and symmetry optimization (Stoecker et al., 1992):
approaches. While the former shows increasing sensitivity,

DAthe latter performs well up to the numerical approximation ]Asymmetry index 5 , (36)Aerrors.
where DA is the non-overlapping area between the original
and reflected mask, and A is the area of the original mask.
This index is computed for both axes. In (Stoecker et al.,7. Application to digital dermatoscopy
1992), only the minimum value is kept. Here we will keep

*both values. For the gray level KL transform, the L7.1. Material and methods
component has been used to compute the following
asymmetry index (Gutkowicz-Krusin et al., 1997):A set of 50 malignant melanoma (MM) and 50 benign

melanocytic lesions, along with their histology, has been ˜OuG(x) 2 G(x )u
]]]]]used to illustrate and evaluate the proposed technique. For Asymmetry index 5 , (37)OG(x)better comparison with the approach used by physicians

and other automated techniques, only the two axes with ˜where G(x) is the original gray level image and G(x ) the
highest local symmetry value have been used for every reflected version. The index is computed for both axes and
lesion. A symmetry feature vector of dimension 6 has the image is masked with a binary mask of the lesion
finally been obtained by separating texture, color and before processing.
shape information. Different results are shown in the following paragraph

A linear classifier with training by epoch (Schalkoff, and discussed in Section 7.3.
1992) has been used to classify the lesions. This method
uses a gradient descent approach to determine the co- 7.2. Results
efficients of the hyperplane that minimizes the misclassifi-
cation error. Since we evaluate a single feature, the use of Figs. 20 and 22 give two examples of texture and color
a linear classifier is acceptable. SMs obtained for pigmented skin lesions, and the corre-

A number of measurements can be used to quantify the sponding axes are superimposed on the lesions in Figs. 21
classification accuracy. In our investigation we have and 23, respectively. In the former case, the lesion is
evaluated the sensitivity (SE), which is the proportion of benign and symmetrical, while in the second case it is
MM that have been classified as MM, the specificity (SP), malignant and asymmetrical. In any case, at least one axis
which is the proportion of lesions that are not MM and that is found, namely the axis that maximizes the symmetry
have been classified accurately, and finally the diagnosis measure. Therefore even asymmetrical objects have a
accuracy (DA), which is the proportion of cases in which symmetry axis, but with a low symmetry value. It is
the classification fits the diagnosis. These three measures interesting to note that when lesions are asymmetrical they
are respectively defined by the following relationships: have more than two local maxima, as can be seen from

Fig. 23. This characteristic may be exploited in futureTP
]]] studies.sensitivity 5 , (33)TP 1 FN
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Fig. 18. Melanocytic skin lesion used throughout this paper to illustrate Fig. 21. Axes obtained from the map of Fig. 20 (red for color, white for
the different optimization schemes. texture).

Fig. 19. Lesion boundaries obtained through color clustering (Schmid,
1999) (red) and nonlinear isotropic diffusion and morphological flooding

Fig. 22. Texture (left) and color (right) symmetry maps of asymmetric(Schmid, 1999) (green).
lesion.

Fig. 20. Texture (left) and color (right) symmetry maps of the lesion Fig. 23. Axes obtained from the map of Fig. 22 (red for color, white for
shown in Fig. 18. texture).
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Table 1 describe a single object. This kind of analysis is left for
Linear classification of symmetry values for benign and malignant lesions future studies.

Optimization Binary KL Gray-level KL Another important study that must follow these initial
results is the evaluation of different texture and colorTP 39 30 35

FP 4 9 4 descriptors. The features used in this study have shown to
TN 45 41 46 work well on synthetic images and in noisy environments
FN 11 20 15 but they may not be optimal for dermatoscopic images.
SE 78% 60% 70%
SP 90% 82% 92%
DA 72.2% 50.8% 64.8%

8. Summary and conclusions
Table 1 gives the different parameter values for different

symmetry features: the 6-D vector obtained from the The problem of finding the axis that maximizes a given
shape, color, and texture SMs, a 2-D vector obtained with symmetry measure has been investigated in this paper. An
the binary KL transform, and a 2-D vector obtained with improved version of the SBX genetic algorithm has been
the gray-level KL transform. proposed, as well as the use of self-organizing maps for

optimization applications. The notion of symmetry map
7.3. Discussion (SM) has been introduced, which provides a 2-D mapping

of any object in a symmetry space. The symmetry prop-
Table 1 shows that the optimization approach combining erties can be completely analyzed from this representation.

shape, color and texture information improves the sepa- Two multi-resolution techniques are provided to improve
ration between benign and malignant lesions. Especially, the processing time of SMs. A coarse-to-fine technique
shape and texture are relevant features, while the color works on the sampling grid of the parameter space, while a
symmetry does not significantly improve the results. pyramidal approach is used to select regions of interest in
Malignant melanoma show to be rather asymmetrical, but the SM that will need better resolution. The use of three
this criteria is not sufficient to separate malignant from SMs, for shape, color and texture information, is illustrated
benign lesions. Different measurements have been repeated for the detection of malignant melanoma. Initial results
with the masks obtained through both the color segmenta- have shown that our approach performs better than classi-
tion and contour detection techniques. While our approach cal principal component approaches used so far for this
did not provide different classification results, this was not application.
the case for the binary KL approach, which is intuitively Beside their applications to computer-aided diagnosis
appealing. In general, the binary approach gives weak systems, as we use them for skin cancer detection, the
results while the gray-scale approach improves signifi- applications of SMs are various:
cantly the classification. • object recognition,

It is interesting to note from the above results that a very • database retrieval,
simple approach such as the gray-level principal com- • medical diagnosis.
ponent decomposition performs close to the more elabo- The SM are especially interesting because they provide a
rated optimization approach developed in this paper. One signature that may be compared with that of other objects,
possible reason is that this method uses asymmetry indexes and lead to a classification. The two search methods, GA
computed from two orthogonal axes, thus evaluating the and SOM, and especially the latter one are very fast when
asymmetry criteria in two orthogonal directions. For the only the detection of the axis with highest symmetry is
different SMs the two largest values have been used, which needed. In conclusion, our future work will focus on the
do not always correspond to orthogonal axes, especially extraction of optimal color and texture descriptors, as well
for malignant melanoma. It is therefore important to as the analysis of SMs for recognition tasks.
extend this work to the extraction of all the local maxima
revealed by the SMs as well as different criteria such as
their respective location. According to our observations, it
may be a very promising way for answering the symmetry Acknowledgements
problem in dermatoscopic images. A symmetry map
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