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Abstract

We present a new algorithm for matching pursuit (MP) dictionary design. This technique uses

existing vector-quantization (VQ) design techniques and an inner-product based distortion measure

to learn functions from a set of training patterns. While this scheme can be applied to many MP

applications, we focus on motion compensated video coding. Given a set of training sequences, data is

extracted from the high energy packets of the motion compensated frames. Dictionaries with different

regions of support are trained, pruned, and finally evaluated on MPEG test sequences. We find that for

high bit-rate QCIF sequences we can achieve improvements of up to 0.66 dB with respect to conventional

MP with separable Gabor functions.

Index Terms

video coding, matching pursuit, dictionary design, vector-quantization

I. INTRODUCTION

Matching pursuit (MP) based video codecs have shown to be competitive with hybrid motion-

compensated block-based discrete cosine transform (DCT) codecs [1], [2], [3], [4]. MP was re-

introduced from statistics to the signal processing community by Mallat and Zhang in 1993 [5].

MP expands a signal using an over-complete dictionary of normalized functions in an iterative

fashion. The matching is based on the inner product between the signal and a given dictionary

function; the updated signal, called residual, is computed by subtracting the best matching
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function. The use of MP to encode the motion compensated frames was originally proposed

in [1]. Details on MP derivation and its mathematical properties can be found in [5], [6].

In most MP based video codecs, separable Gabor functions are used to encode the motion

compensated frames. This leads to a fast implementation of the MP algorithm, but has a

number of drawbacks: (a) there is no orientation information, and (b) Gabor atoms have the

tendency to introduce small oscillations, especially when the number of atoms used to encode

the signal is small, i.e. at very low bit-rates. A number of modifications have been proposed,

without noticeable improvement. In [7], the authors propose to use a sub-band dictionary, which

significantly reduces the computational cost without loss in performance. In [8], the authors

propose a fast matching pursuit algorithm that uses non-separable dictionary functions. A bank

of filters is used to produce N filtered signals from the input signal. The algorithm updates these

signals after each iteration, obviating the need to repeat the filtering. However, this technique

requires the storage of the N filtered signals, even if atoms are given as a linear combination

of a small number of basis functions [8]. With this approach, improvements over non-separable

dictionaries are less than 0.5 dB. Goodwin [9] has used damped sinusoids to model signals with

transient behavior, and has shown that expansions using this kind of dictionary can be efficiently

derived using simple recursive filter banks. However, the extension to two-dimensional signals

is not straightforward. Finally, Chou et al. [10] have used gain-shape vector quantization to

learn new dictionaries. However, their learning scheme does not take advantage of specific

characteristics of MP.

Other techniques, such as the one proposed by Olshausen [11] might be used to learn functions

from natural patterns; this approach is especially interesting because it embeds characteristics

inspired by the human visual system. However, since it uses linear combinations of basis

functions, it can not be adapted to MP applications.

In this paper, we propose a scheme to learn an MP dictionary from the motion compensated

frames obtained from a set of training sequences. To begin with, the learning scheme must be

adapted to MP applications. As such, we use vector quantization (VQ) [12] with a distortion

measure based on the inner-product, as it is used in MP. Convergence is improved by using a

decision rule that allows for removing small partitions and splitting larger partitions to keep the

number of dictionary functions constant. Three dictionaries with different regions of support are

learned, and usage statistics are used to reduce the number of functions. Huffman codes are then
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computed from the usage statistics, and finally the new dictionary is evaluated on a set of test

sequences.

This paper is organized as follows: Section II provides a short overview of matching pursuit.

The proposed learning scheme is presented in Section III; results obtained for two different

simulation scenarios are given in Section IV. Finally, conclusions are drawn in Section V.

II. MATCHING PURSUIT

MP decomposes any signal f into a linear expansion of waveforms called hereafter atom.

These normalized functions are selected from a redundant, i.e. over-complete, dictionary:

D = {gγ}γ∈Γ , (1)

where Γ = {1, . . . , N} is the set of all indices, and N is the dictionary size. MP is an iterative

process producing at each iteration a new residual signal, which is then used as input to the next

iteration. Initially, the residual is equal to the original signal. The residual at iteration m + 1 is

computed using the following equations:

Rm+1f = Rmf − 〈Rmf, gγm
〉gγm

, (2)

R0f = f , (3)

where Rmf is the residual at iteration m, 〈·, ·〉 is the inner product, and gγm
∈ D the function

whose inner product with the residual Rmf is at a maximum:

|〈Rmf, gγm
〉| = sup

gγ∈D

|〈Rmf, gγ〉| . (4)

After M iterations, the decomposed signal can be written in terms of the successively matched

atoms as:

f =
M−1
∑

m=0

〈Rmf, gγm
〉gγm

+ RMf . (5)

The inner product between the residual at iteration m + 1 and the atom at iteration m is given

by:

〈Rm+1f, gγm
〉 = 〈Rmf − 〈Rmf, gγm

〉gγm
, gγm

〉

= 〈Rmf, gγm
〉 − 〈Rmf, gγm

〉〈gγm
, gγm

〉

= 0 ,

(6)
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which means that the vectors are orthogonal to each other. The energy of the signal can therefore

be written as the sum of the different contributions:

‖f‖2 =
M−1
∑

m=0

|〈Rmf, gγm
〉|2 + ‖RMf‖2 . (7)

For large signals, the computation time remains prohibitive and solutions must be found to

speed up the encoding. In our case, f is the motion compensation error. It is a sparse signal for

which the matching process can be confined to high-energy regions. These regions are detected

by splitting the residual image into smaller blocks, and by computing the energy of each block.

The matching process is then limited to the regions surrounding the high energy blocks [2].

The number of MP iterations depends on the bit-rate, i.e. the higher the bit-rate the larger

the number of atoms necessary to encode the motion compensation error. Thus, each motion

compensation error frame is only approximated, and the encoding error RMf is propagated

through the succeeding frames.

III. DICTIONARY DESIGN

A. Learning patterns with vector-quantization

Our proposed learning scheme is based on vector quantization (VQ) [12]. It is an iterative

process that learns a predefined number of vectors, called hereafter code-vectors, from a set of

input vectors, called hereafter patterns, according to some distortion measure. Each iteration is

made of two processing steps:

1) Partition the pattern space: this is achieved by grouping patterns whose distortion with

respect to a given code-vector is minimum.

2) Update the code-vectors: this is achieved by computing the vectors that minimize the sum

of all distortions within the different partitions.

The algorithm ends when a predefined stopping criterion is met, such as a threshold on the

overall distortion.

Matching pursuit uses the inner product to match the different dictionary functions to the

residuals and to select the atoms used to encode the original signal. We have therefore chosen

to use an inner product based distortion measure in our VQ scheme, since this metric will

later define how well a learned dictionary function matches a residual. Let S ⊂ R
k be a set of

M normalized training patterns of dimension k, X = {1, . . . , N} be the set of all code-vector
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indices, and n be the iteration number in the dictionary design process. The energy ωi of each

pattern is computed before normalization. These values are later used during the code-vector

update step. We define the following distortion measure between a normalized pattern xi ∈ S

and the j th normalized code-vector x̂j,n:

d〈·,·〉(xi, x̂j,n) = 1 − |〈xi, x̂j,n〉| , (8)

where < ·, · > is the inner product. The distortion is equal to 1 when xi and x̂j,n are orthogonal,

and to zero when they are identical. A partition Sj,n is a set of patterns having minimum distortion

with respect to a given code-vector x̂j,n:

Sj,n =
{

xi ∈ S | d〈·,·〉(xi, x̂j,n) ≤ d〈·,·〉(xi, x̂l,n) , ∀l ∈ X
}

, (9)

and

S =
⋃

j∈X

Sj,n , (10)

Sj,n ∩ Sl,n = ∅ , (11)

∀j 6= l and with j, l ∈ X.

The updated code-vector x̂j,n+1 ∈ R
k is obtained by minimizing the total weighted distortion

δj,n in Sj,n:

δj,n =
∑

xi∈Sj,n

ωid〈·,·〉(xi, x̂j,n+1) ≤
∑

xi∈Sj,n

ωid〈·,·〉(xi,x) , ∀x ∈ R
k (12)

The minimization of Eq. 12 with the distortion measure defined in Eq. 8 requires the use of

Lagrange multipliers. Since both xi and x̂j,n are normalized, the following L2-norm distortion

measure can be used instead of Eq. 8:

dL2(xi, x̂j,n) = ‖x̂j,n − xi‖
2

= (x̂j,n − xi) · (x̂j,n − xi)
T

= 2 − 2x̂j,n · xT
i

= 2(1 − 〈xi, x̂j,n〉) ,

(13)

provided all inner products are positive. To achieve this, we let each pattern have two equivalent

versions: the original and its negative, i.e. xi and −xi, and use the one resulting in a positive
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inner product in Eq. 13. This is possible because Eq. 8 uses the absolute value of the inner

product.

We then define S
(+)
j,n and S

(−)
j,n as the sets of patterns in Sj,n having positive and negative inner

products with x̂j,n, respectively:

S
(+)
j,n ∪ S

(−)
j,n = Sj,n , (14)

S
(+)
j,n ∩ S

(−)
j,n = ∅ . (15)

Once both subsets are computed, we can use Eq. 13 instead of Eq. 8 by taking the negative

value of the inner product for each pattern in S
(−)
j,n . Using Lagrange multipliers, we have shown

in the Appendix that the minimization of Eq. 12 with the distortion measure defined by Eq. 13

leads to the following weighted average update equation:

x̂j,n+1 =

∑

xi∈S
(+)
j,n

ωixi −
∑

xi∈S
(−)
j,n

ωixi

∑

xi∈Sj,n
ωi

. (16)

More weight is given to high energy patterns in Eq. 16, since it is essential to first encode high

energy structures present in the motion compensation error. The code-vectors are normalized

after being updated.

The derivation of this update equation is based on the assumption that for each partition the

sign of the inner product between the code-vector and the patterns will not change after the

code-vector is updated. This is of course not exactly the case in practice. However, because the

centroids change slowly from one iteration to another, this assumption breaks down only for a

small sub-set of the patterns, and only affects vectors whose inner product with the code-vector

is close to zero, i.e. those for which a sign change can happen. The validity of our assumptions in

practice will be illustrated in Section IV, and the full derivation of Eq. 16 is given in Appendix.

In order to prevent the VQ algorithm from converging to a local minimum, it is necessary to

modify the above two-step scheme. Different improvements have been proposed in the literature,

such as coupling stochastic relaxation methods with VQ [13]. In [14], the authors propose a de-

terministic annealing approach. Both approaches are formulated within a probabilistic framework

and lead to complex and time-consuming processes, even though they are faster than techniques

based on simulated annealing. The use of fuzzy sets theory for VQ has been proposed by

Karayianis et al. [15], [16]. They have successfully applied it to compression problems, but their

approach is still very expensive in terms of computation time. In order to achieve a fair balance
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between computation time and reliability, we set a time-decreasing threshold on the partition

size in order to decide which partitions should be suppressed. In order to keep the same number

of centroids, a randomly selected partition is split into two, with larger partitions being more

likely to be selected than smaller ones. We use the following exponential threshold function in

our simulations:

Ωthresh =
Ω

N
exp

{

−
M

M0

}

, (17)

where M is the iteration number, M0 is a constant scalar that controls the convergence rate, N

is the number of code-vectors, and Ω is the weighted size of the pattern space:

Ω =

n
∑

i=1

ωi . (18)

In our simulations we set M0 = 20, and Ωthresh is only used every four iterations in order to

allow the system to stabilize in the neighborhood of a local minimum:

Ωthresh =











Ω
N

exp
{

− M
M0

}

if M mod 4 = 0,

0 otherwise.
(19)

While this approach is of low complexity, we have shown it to be robust, and to lead to near-

optimal results.

B. Learning cycle for motion compensated video coders

The extraction of training patterns from the motion residuals is an important issue. The entire

residual cannot be learned by our proposed scheme since high energy pockets are sparsely

distributed. Only regions in the residual where one or several dictionary functions are matched

can be taken into account. The patterns used to learn new functions are extracted from a set of

training sequences encoded with an initial dictionary, in our case a dictionary of Gabor functions.

Each time a dictionary function is matched to the residual, the underlying pattern is extracted. We

use a square window with a fixed size, centered on the matched function. Using this approach,

only high energy regions of the residual are used for the training. The initial dictionary, called

h30 [17], contains 400 separable Gabor functions and 72 non-separable Gabor functions. The

number of functions learned in our simulations is therefore always 472.

Since patterns might be extracted from a region where a dictionary function has previously

been matched, their content is influenced by the dictionary itself. In addition to that, residuals in
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initial dictionary MP coder

Patterns

Learning

training sequences

Basis functions

Fig. 1. Training cycle for learning basis functions.

successive frames depend on the dictionary used to encode the previous frames, and so do the

extracted patterns. We are therefore facing a “chicken and egg” problem, and to address this, we

must repeat the pattern extraction-dictionary design cycle several times, using the successively

learned dictionaries to extract a new set of patterns. This concept is shown in Figure 1. This is

a time consuming process, and we have experienced that even running only one cycle takes a

long time. Moreover, we have run several cycles in some of our simulations and have found no

noticeable difference between successive cycles. The results shown in this paper are obtained

with only one learning cycle. Further work is needed to examine the effect of running multiple

cycles.

Finally, note that once a new dictionary is learned, the training sequences are encoded with

this new dictionary in order to produce usage statistics. These statistics are then used to compute

the Huffman codes necessary to encode the atom parameters.

IV. SIMULATIONS AND RESULTS

All sequences used to train and test the dictionaries are in QCIF. In order to obtain a large

training set, we have collected 17 high motion sequences of 30 frames from outside the standard

MPEG sequences. We call them anonymous sequences because they do not belong to any standard
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group of test sequences. The purpose of using such short sequences is (a) to increase the diversity

of the patterns needed in the learning phase while maintaining their number at a reasonable level,

in our case more than 100,000, and (b) to reduce the influence of the initial dictionary on the

pattern extraction due to the propagation of the encoding error. The standard MPEG sequences

are kept for the test phase, because they can be easily compared to other techniques for which

simulation results are readily available in the literature.

We learn three different dictionaries, each one having a different region of support: 9 × 9,

17 × 17, and 35 × 35 pixels. A threshold is applied to the energy of the motion residual to

control the bit-rate. This approach is motivated by the fact that the energy of the residual signal

varies for each sequence and each frame, and that at low energy values we encode mainly noise.

A unique threshold is empirically chosen for all simulations, in order to match the bit-rates

suggested for the different MPEG sequences to enable fair comparison. The foreman, coast,

table tennis, container, mobile, and stefan sequences are used to evaluate the performance of

the learned dictionary.

Once a new dictionary is learned, a Huffman code is generated, based on the atom statistics

obtained during the encoding of the training sequences. Two techniques are used to reduce the

size of the dictionaries: the first one is based on the usage statistics and allows reduction of the

number of functions from 3 × 472 = 1416 down to 472, which is the size of our reference

dictionary h30 [17]. A second approach is based on the pair-wise cross-correlation of the

different dictionary functions. It allows further pruning of the final dictionary while keeping

the performance almost at the same level. The idea is simply to remove similar functions, which

typically occur in dense regions of the pattern space for which the VQ scheme learns several

similar code vectors.

The performances are summarized in Table I. Generally speaking, the learned dictionary

outperforms h30 at higher bit-rates. This is because at higher bit-rates a larger portion of the bits

is devoted to texture coding. At low bit-rates, most bit budget is spent on motion and learning

dictionaries does not help improving the performance. As an example, at bit rates around 300

kbps, improvements are 0.66 and 0.56 dB for mobile and stefan, respectively.

After statistical pruning, the new dictionary contains 116 functions from the 35×35 dictionary

(24.47 %), 169 functions from the 17 × 17 dictionary (35.65 %), and 189 functions from the

9 × 9 dictionary (39.88 %). Most of these functions have therefore a small region of support.
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sequence kbps fps h30 [dB] new [dB] gain [dB]

foreman 112.6 30 33.05 33.49 0.44

foreman 62.5 10 32.89 33.07 0.18

coast 156.0 30 32.11 32.59 0.48

coast 81.5 10 31.94 32.19 0.25

table tennis 59.5 30 33.28 33.55 0.27

table tennis 47.6 10 33.16 33.27 0.11

container 35.2 30 33.38 33.8 0.42

container 17.3 10 33.22 33.46 0.24

mobile 313.3 30 27.87 28.53 0.66

stefan 315.1 30 29.74 30.3 0.56

TABLE I

MEAN PSNR PERFORMANCE FOR Y COMPONENT.

Usage statistics are collected when encoding the different test sequences. Dictionary functions

are then sorted in the order of increasing usage. Figure 2 shows the ranked usage statistics

obtained for the new dictionary. As seen, the distribution is much more uniform than for h30.

This is indeed a desirable property for the learned dictionary in the sense that all its functions

should be of equal importance. Functions that are rarely used, if removed from the dictionary,

would not, on average, significantly reduce the quality of encoded sequences. If all functions are,

on average, equally used, they equally contribute to the encoding process and they are equally

important. When the number of functions in the dictionary and hence the time necessary for the

matching process must be kept as low as possible, this property is indeed desirable. Figure 2

illustrates that with the newly designed dictionary we are closer to this ideal situation than with

dictionary h30.

Figure 3 plots the mean distortion at each iteration when learning the dictionary with the

17 × 17 region of support from the anonymous sequences. As expected, it is a monotonically

decreasing function, except when partitions are split. Iterations where splitting occur are marked

with a ◦. As underlined in section III, the update equation 16 is only valid if for all code-vectors

the sign of the inner-products before and after they are updated remain unchanged for all the

patterns that belong to their partition. In our simulations, we found the number of code vectors

which violate this constraint to be non zero only at the first iteration. This is actually due to the
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Fig. 2. Ranked usage statistics of dictionary functions (B).

fact that code-vectors are initialized randomly.

A subset of the new dictionary is shown in Figure 4. As seen, the learned functions have

a coherent structure: they are centered, oriented, limited in size, and modulated. The Fourier

transforms of these functions are shown in Figure 5. We expect the learned functions to be easily

and efficiently approximated with functions of low complexity for a fast implementation [17],

[18]. The fact that the learned dictionaries have a coherent structure is an encouraging result,

knowing that learning schemes providing functions of such a “quality” are generally difficult to

establish in computer vision applications [19].

In all simulations, the rate control is matched to the runs obtained by encoding with h30, which

in turn is achieved by using an energy threshold. As such, this is inherently biased towards h30,

and might limit the performance of the learned dictionary. However, this is necessary in order

to keep the bit-rates equal and hence the comparisons meaningful. The time required to run a

complete set of simulations with training and testing is on the order of several days on a Silicon

Graphics Onyx computer with eight processors. The main reason is that the amount of data

extracted from the training sequences for the learning phase is huge: more than 100’000 patterns

of size 35× 35. However, this is a one-time cost that should only be borne once. Once the new
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dictionary is designed, it can be used over and over in many encoding/decoding scenarios. In

addition to that, the dictionaries can be approximated with a series of elementary functions as

described in [18], and hence further speed ups can be expected in the future.

V. CONCLUSIONS

In this paper we present a dictionary design technique for video codecs based on matching

pursuit. A learning scheme based on vector-quantization has been developed for this purpose.

Learning new dictionaries requires many time-consuming processing steps in order to extract

training patterns from a set of sequences, compute usage statistics to prune the learned dictio-

naries, and compute the Huffman codes.

Our final learning scheme has been to use three different fixed regions of support for patterns

extracted from the motion corrected frames. An energy threshold has been used to set the number

of atoms encoded for each frame, thus avoiding to encode noise. Once the three dictionaries are

computed, a pruning based on the usage statistics is performed, and finally the Huffman codes

are computed. Examples are given for sequences in QCIF format. For bit-rates above 100 kbps,

we have obtained improvements of up to 0.66 dB with respect to conventional MP with separable

Gabor functions. We found that learning dictionaries for low-motion sequences does not allow
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Fig. 4. Subset of dictionary functions (B).

for significant improvements in performances.

Future work involves learning dictionaries for different categories of sequences and the ap-

proximation with elementary functions that can be implemented efficiently [18]. The definition of

specific characteristics that can be used to select an appropriate dictionary for a given sequence

would also be of great interest. Finally, additional simulations will help understanding the effect

of iterative dictionary learning, where a learned dictionary is used as the reference dictionary in

the pattern extraction phase of the next iteration.

VI. APPENDIX

The minimization of Eq. 12 with the L2-norm distortion measure given by Eq. 13 is obtained

by setting to zero all partial derivatives:

∂

∂x̂l,j





∑

xi∈Sj,n

ωidL2 (xi, x̂j,n+1)



 = 2
∑

xi∈Sj,n

ωi (x̂l,j − xl,i) = 0 , (20)
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Fig. 5. Fourier transform of functions shown in Figure 4.

where

x̂j,n+1 =
(

x̂1,j · · · x̂k,j

)

, (21)

xi =
(

x1,i · · · xk,i

)

. (22)

From this set of k equations we obtain the following update formula:

x̂j,n+1 =

∑

xi∈Sj,n

ωixi

∑

xi∈Sj,n

ωi

. (23)

In this update equation we assume that all inner products are positive. If we take into account

the sign test we did during the partition phase, then the update equation becomes:

x̂j,n+1 =

∑

xi∈S
(+)
j,n

ωixi −
∑

xi∈S
(−)
j,n

ωixi

∑

xi∈Sj,n

ωi

, (24)

which is Eq. 16. Note that the updated centroids must be normalized after they are computed.
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To verify that the minimization of Eq. 12 with the distortion measure given by Eq. 8 under

the constraint that the updated centroids have unit norm is equivalent to the above result, we

need to use Lagrange multipliers. The initial set of k + 1 equations that must be solved is:

∂

∂x̂l,j





∑

xi∈Sj,n

ωi (1 − |〈xi, x̂j,n+1〉|)



+ λ
∂

∂x̂l,j

(

−1 +
k
∑

m=1

x̂2
m,j

)

= 0 , (25)

−1 +
k
∑

m=1

x̂2
m,j = 0 , (26)

which, when using the subsets S
(+)
j,n and S

(−)
j,n , become

∑

xi∈S
(−)
j,n

ωixl,i −
∑

xi∈S
(+)
j,n

ωixl,i + 2λx̂l,j = 0 , (27)

−1 +
k
∑

m=1

x̂2
m,j = 0 , (28)

for l = 1, . . . , k. Using simple calculus the following solution is obtained:

x̂1,j = ±

√

√

√

√

√

α2
1

k
∑

m=1

α2
m

, (29)

x̂2,j =
α2

α1

x̂1,j , (30)

...

x̂k,j =
αk

α1
x̂1,j , (31)

where

αl =
∑

xi∈S
(−)
j,n

ωixl,i −
∑

xi∈S
(+)
j,n

ωixl,i . (32)

Since the sign of x̂j,n+1 does not affect the distortion measure, i.e. the same distortion value

is obtained taking x̂j,n+1 or −x̂j,n+1 , we arbitrarily choose x̂1,j > 0. Knowing that the norm of

the updated centroid when using Eq. 24 is given by:

1
∑

xi∈Sj,n

ωi

√

√

√

√

k
∑

m=1

α2
m =

∥

∥

∥

∥

∥

∥

∥

∥

∑

xi∈S
(+)
j,n

ωixi −
∑

xi∈S
(−)
j,n

ωixi

∑

xi∈Sj,n

ωi

∥

∥

∥

∥

∥

∥

∥

∥

, (33)
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and that
∣

∣

∣

∣

∣

∣

∣

∑

xi∈S
(−)
j,n

ωix1,i −
∑

xi∈S
(+)
j,n

ωix1,i

∣

∣

∣

∣

∣

∣

∣

= sign(α1)







∑

xi∈S
(−)
j,n

ωix1,i −
∑

xi∈S
(+)
j,n

ωix1,i






, (34)

the following result is obtained:

x̂j,n+1 = sign(α1)

∑

xi∈S
(+)
j,n

ωixi −
∑

xi∈S
(−)
j,n

ωixi

∑

xi∈Sj,n

ωi

∥

∥

∥

∥

∥

∥

∥

∥

∑

xi∈S
(+)
j,n

ωixi −
∑

xi∈S
(−)
j,n

ωixi

∑

xi∈Sj,n

ωi

∥

∥

∥

∥

∥

∥

∥

∥

−1

, (35)

which is the normalized version of x̂j,n+1 computed with Eq. 16. sign(α1) affects all components

of x̂j,n+1 and can therefore be disregarded.
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